Министерство науки и высшего образования РФ

ФГБОУ ВО Уральский государственный лесотехнический университет

Инженерно-технический институт

Кафедра технологических машин и технологии машиностроения

Рабочая программа дисциплины

включая фонд оценочных средств и методические указания для самостоятельной работы обучающихся

Б1.О.20 СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Направление подготовки 23.03.02 «Наземные транспортно-технологические комплексы»

Направленность (профиль) — «Гидравлические и пневматические системы транспортно-технологических комплексов»

Квалификация - бакалавр

Количество зачётных единиц (часов) – 4 (144)

Разработчик: к.т.н., С. / С.А. Одинцева /
Рабочая программа утверждена на заседании кафедры технологических машин и технологии машиностроения
(протокол № 8от « <u>31</u> » <u>О1-101</u> (года).
Зав. кафедрой/Н. В. Куцубина/
Рабочая программа рекомендована к использованию в учебном процессе методической комиссией Инженерно-технического института
(протокол № 5 от « 1 » февралу 2024 года).
Председатель методической комиссии ИТИ ДА. А. Чижов/
Рабочая программа утверждена директором Инженерно-технического института
Директор ИТИ <u>Сести</u> /Е. Е. Шишкина/ « <u>1</u> » февраль 2024 года
« 1 » феврано 24 года

Оглавление

1. Общие положения	4
2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	4
3. Место дисциплины в структуре образовательной программы	
4. Объем дисциплины в зачетных единицах с указанием количества	5
академических часов, выделенных на контактную работу обучающихся с преподав	зателем (по
видам учебных занятий) и на самостоятельную работу обучающихся	5
5. Содержание дисциплины, структурированное по темам (разделам) с указанием	и отведенного
на них количества академических часов	6
5.1. Трудоемкость разделов дисциплины	6
5.2. Содержание занятий лекционного типа	7
5.3. Темы и формы занятий семинарского типа	9
5.4 Детализация самостоятельной работы	9
6. Перечень учебно-методического обеспечения по дисциплине	
7. Фонд оценочных средств для проведения промежуточной аттестации обучающи	ихся по
дисциплине	12
7.1. Перечень компетенций с указанием этапов их формирования в процессе ос	своения
образовательной программы	12
7.2. Описание показателей и критериев оценивания компетенций на различных	к этапах их
формирования, описание шкал оценивания	13
7.3. Типовые контрольные задания или иные материалы, необходимые для с	оценки
знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы	ſ
формирования компетенций в процессе освоения образовательной программы	14
7.4. Соответствие оценок и уровней сформированных компетенций	19
8. Методические указания для самостоятельной работы обучающихся	20
9. Перечень информационных технологий, используемых при осуществлении	21
образовательного процесса по дисциплине	21
10. Описание материально-технической базы, необходимой для осуществления	22
образовательного процесса по дисциплине	22

1. Общие положения

Дисциплина «Сопротивление материалов», относится к блоку Б1 учебного плана, входящего в состав образовательной программы высшего образования 23.03.02 «Наземные транспортно-технологические комплексы» (профиль – «Гидравлические и пневматические системы транспортно-технологических комплексов»).

Нормативно-методической базой для разработки рабочей программы учебной дисциплины «Сопротивление материалов» являются:

- Федеральный закон «Об образовании в Российской Федерации», утвержденный приказом Минобрнауки РФ № 273-ФЗ от 29.12.2012;
- Приказ Минобрнауки России №245 от 06.04.2021 г. Об утверждении порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета, программам магистратуры.
- Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 23.03.02 «Наземные транспортно-технологические комплексы», утвержденный приказом Министерства науки и высшего образования Российской Федерации№ 915 от 7 августа 2020 г.
- Профессиональный стандарт 31.007 «Работник по сборке автотранспортных средств и их компонентов», утвержден приказом Министерства труда и социальной защиты Российской Федерации от 03.10.2022 № 608н;
- Профессиональный стандарт 40.198 «Специалист по проектированию гидро- и пневмоприводов», утвержден приказом Министерства труда и социальной защиты Российской Федерации от 2 июля 2019 года N 462н;
- Учебные планы образовательной программы высшего образования направления 23.03.02 «Наземные транспортно-технологические комплексы»- «Гидравлические и пневматические системы транспортно-технологических комплексов» подготовки бакалавров по очной и заочной формам обучения, одобренные Ученым советом УГЛТУ (протокол № 3 от 21.03.2024). Обучение по образовательной программе 23.03.02 «Наземные транспортно-технологические комплексы» «Гидравлические и пневматические системы транспортно-технологических комплексов» осуществляется на русском языке.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине, являются знания, умения, владения и/или опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы в целом.

Цель дисциплины - формирование теоретических знаний и практических навыков решения стандартных задач профессиональной деятельности, основанных на фундаментальных знаниях общих методик расчета материалов.

Задачи дисциплины:

- изучение сопротивления материалов в объеме необходимом для усвоения общепрофессиональных и специальных дисциплин;
 - достижение глубокого понимания обучающихся сути механических явлений;
- развитие способности к приобретению с большой степенью самостоятельности новых знаний с использованием современных образовательных и информационных технологий;
- способность решать стандартные задачи профессиональной деятельности, направленные на повышение надежности выпускаемой продукции.

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности.

В результате изучения дисциплины студент должен:

знать:

- основные понятия и методы сопротивления материалов;
- методы расчета элементов инженерных конструкций на прочность, жесткость и надежность;

уметь:

- применять методы расчета элементов инженерных конструкций на прочность, жесткость и надежность при решении стандартных задач профессиональной деятельности;
- приобретать с большой степенью самостоятельности новых знаний в области сопротивления материалов с использованием современных образовательных и информационных технологий;

владеть навыками:

- решения стандартных задач профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.

3. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к обязательной части, что означает формирование в процессе обучения у обучающихся основных профессиональных знаний и компетенций в рамках выбранного профиля.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин ОПОП и написания выпускной квалификационной работы.

Перечень обеспечивающих, сопутствующих и обеспечиваемых дисциплин

Обеспечивающие	Сопутствующие	Обеспечиваемые
Физика Теоретическая механика		Теория механизмов и машин
Химия Метрология, стандартизация и		Детали машин
Математика	сертификация	Теория механизмов и машин. Спецглавы

Указанные связи дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с ФГОС ВО, что обеспечивает требуемый теоретический уровень и практическую направленность в системе обучения и будущей деятельности выпускника.

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Вид учебной работы	Всего академических часов				
	очная форма	заочная форма			
Контактная работа с преподавателем:	52,35	16,35			
лекции (Л)	20	6			
практические занятия (ПЗ)	16	6			
лабораторные работы (ЛР)	16	4			
промежуточная аттестация (ПА)	0,35	0,35			
Самостоятельная работа обучающихся	91,65	127,65			
изучение теоретического курса	50	70			
подготовка к текущему контролю знаний	20	30			
подготовка домашнего задания	9,65	7,65			
подготовка к промежуточной аттестации	12	20			
Вид промежуточной аттестации:	Экзамен	Экзамен			

Вид учебной работы	Всего академических часов			
	очная форма заочная форма			
Общая трудоемкость	4/144	4/144		

^{*}Контактная работа обучающихся с преподавателем, в том числе с применением дистанционных образовательных технологий, включает занятия лекционного типа, и (или) практические занятия, лабораторные работы, и (или) групповые консультации, и (или) индивидуальную работу обучающегося с преподавателем, а также аттестационные испытания промежуточной аттестации. Контактная работа может включать иные виды учебной деятельности, предусматривающие групповую и индивидуальную работу обучающихся с преподавателем. Часы контактной работы определяются Положением об организации и проведении контактной работы при реализации образовательных программ высшего образования, утвержденным Ученым советом УГЛТУ от 25 февраля 2020 года.

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов

5.1. Трудоемкость разделов дисциплины очная форма обучения

№ π/π	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятельная работа
1	Задачи курса сопротивления материалов. Основные понятия. Понятия о напряженном и деформированном состоянии. Метод сечений.		-	-	1	4
2	Центральное растяжение-сжатие.Сдвиг.	1	2	4	7	6
3	Механинеские свойства материалов		2	-	4	6
4	4 Поперечный изгиб. Кручение. Расчеты на прочность.		2	8	12	6
5	5 Анализ напряженного и деформированного состояния в точке.		-	-	1	6
6	6 Сложное сопротивление.		-	-	2	6
7	Изгиб с кручением.	2	2	-	4	6
8	Теория напряженного и деформиро-		-	1	1	6
9	Теория прочности.	1	-	-	1	6
10	Интеграл Мора. Способ Верещагина.	2	-	-	2	4
11	Косой изгиб. Внецентренное сжатие.	1	2	-	3	8
12	Статически неопределимые системы.	2	2	-	4	10
13	Устойчивость сжатых стержней.	1	2	-	3	4
14	14 Динамические нагрузки.		2	4	7	4
	Итого по разделам:	20	16	16	52	82
	Промежуточная аттестация	-	-	-	0,35	9,65
	Всего:	144				

заочная форма обучения

№ п/п	Наименование раздела дисциплины	Л	П3	ЛР	Всего контактной работы	Самостоятельная работа
1	Задачи курса сопротивления материалов. Основные понятия. Понятия о напряженном и деформированном со-	0,25	ı	ı	0,25	6

№ π/π	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятельная работа
	стоянии. Метод сечений.					
2	Центральное растяжение-сжатие.Сдвиг.	0,25	0,5	2	2,75	8
3	Механические свойства материалов. Геометрические характеристики	0,5	0,5	ı	1	8
4	Поперечный изгиб. Кручение. Расчеты на прочность.	0,5	0,5	1	1	8
5	5 Анализ напряженного и деформированного состояния в точке.		0,25	-	0,75	6
6	Сложное сопротивление.	0,5	0,5	ı	1	10
7	Изгиб с кручением.	0,5	0,5	ı	1	10
8	Теория напряженного и деформирован- ного состояния в точке. Обобщенный закон Гука. Объемная деформация.	0,25	0,25	1	0,5	8
9	Теория прочности.	0,25	0,5	ı	0,75	8
10	Интеграл Мора. Способ Верещагина.	0,5	0,5	ı	1	6
11	Косой изгиб. Внецентренное сжатие.	0,5	0,5	ı	1	8
12	Статически неопределимые системы.	0,5	0,5	ı	1	14
13	Устойчивость сжатых стержней.	0,5	0,5	-	1	10
14	Динамические нагрузки.	0,5	0,5	2	3	10
	Итого по разделам:	6	6	4	16	120
	Промежуточная аттестация	-	-	-	0,35	7,65
Всего: 144						

5.2. Содержание занятий лекционного типа

Тема 1. Введение. Основные положения. Задачи курса сопротивления материалов.

Связь курса с другими дисциплинами. Методика решения задач в сопротивлении материалов. Выбор и обоснование расчетной схемы. Определение стержня, пластины, оболочки, массива. Перемещения угловые и линейные. Принцип начальных параметров. Упругость и пластичность. Основные гипотезы о деформируемом теле. Внешние силы и их классификация. Силы объемные и поверхностные. Нагрузки статические и динамические. Нагрузки постоянные и переменные во времени. Принцип Сен-Венана.

Тема 2. Принцип независимости действия сил. Внутренние силы и метод их изучения (метод сечений). Напряжение полное, нормальное и касательное. Деформации линейные и угловые.

Понятия о напряженном и деформированном состоянии. Растяжение и сжатие. Напряжения в поперечные и наклонные сечения прямого стержня. Деформации продольные и поперечные. Коэффициент Пуассона. Закон Гука при одноосном напряженном состоянии. Модуль упругости. Определение осевых перемещений поперечных сечений. Построение эпюр продольных сил, нормальных напряжений и осевых перемещений. Потенциальная энергия деформации. Удельная потенциальная энергия.

Тема 3. Механические свойства материалов при растяжении и сжатии.

Опытное изучение свойств материалов при растяжении. Механические характеристики. Диаграмма сжатия. Пластическое и хрупкое состояние материала, типы разрушения. Влияние температуры и скорости нагружения на механические характеристики материала.

Тема 4. Расчеты на прочность при растяжении и сжатии.

Расчет по допускаемым напряжениям. Расчет по разрушающим нагрузкам. Основные понятия о надежности и долговечности конструкции. Типы задач при расчете на прочность: проверка на прочность, подбор сечений и определение грузоподъемности стержней.

Тема 5. Кручение. Исследование чистого сдвига.

Главные напряжения при чистом сдвиге. Закон Гука для сдвига. Зависимости между Е, G, v для изотропного тела. Кручение прямого стержня круглого поперечного сечения. Напряжения в поперечном сечении стержня. Угол закручивания. Жесткость при кручении. Потенциальная энергия деформации круглого стержня при кручении. Расчет сплошного и пустотелого круглого стержня на прочность и жесткость. Основные результаты теории кручения стержней некруглого сечения.

Тема 6. Геометрические характеристики поперечных сечений стержня.

Статические моменты площади. Осевые, полярные и центробежные моменты инерции площади. Радиусы инерции. Зависимости между моментами инерции для параллельных осей. Изменение осевых моментов в зависимости от угла поворота координатных осей. Главные оси инерции. Главные моменты инерции. Определение положения главных осей и вычисление главных моментов инерции различных сечений.

Тема 7. Изгиб прямых стержней.

Внешние силы, вызывающие изгиб. Опоры и опорные реакции. Определение внутренних силовых факторов в поперечных сечениях балок при изгибе. Дифференциальные зависимости между М, Q и q. Эпюры М и Q. Чистый и поперечный изгиб. Нормальные напряжения при чистом изгибе. Распространение выводов чистого изгиба на поперечный изгиб. Касательные напряжения при поперечном изгибе стержня (формула Д.И.Журавского). Касательные напряжения при изгибе тонкостенных стержней. Понятие о центре изгиба. Главные напряжения при изгибе. Рациональное сечение балок.

Тема 8. Потенциальная энергия деформации при изгибе. Дифференциальное уравнение изогнутой оси прямого стержня и его интегрирование.

Метод начальных параметров. Балки на упругом основании. Теория напряженного и деформированного состояния в точке. Главные площадки и главные напряжения. Определение положения главных площадок и отыскание —величин главных напряжений. Определение напряжений в наклонной площадке при двухосном напряженном состоянии. Графическое изображение напряженного состояния с помощью круга Мора. Экстремальные касательные напряжения. Обобщенный закон Гука. Объемная деформация. Удельная потенциальная энергия. Удельная энергия изменения объема и изменения формы.

Тема 9. Теории прочности и их назначение. Эквивалентное напряжение.

Критерии возникновения пластических деформаций. Теория наибольших касательных напряжений. Теория энергии формоизменения. Теория хрупкого разрушения. Теория Мора.

Тема 10. Потенциальная энергия деформации и общие методы определения перемещений.

Потенциальная энергия – стержня при произвольном нагружении. Теоремы о взаимности работ и перемещений. Теорема Кастилиано и принцип наибольшей работы. Интеграл Мора для вычисления перемещений произвольно нагруженного стержня. Способ Верещагина.

Тема 11. Общий случай действия нагрузок на стержень. Косой изгиб.

Определение напряжений, нахождение положения нейтральной оси и опасных точек в сечении. Расчет на прочность стержней большой жесткости при совместном изгибе и растяжении или сжатии. Определение положения нейтральной линии и напряжений. Внецентренное сжатие, изгиб с кручением.

Тема 12. Статически неопределимые системы.

Понятие о степенях свободы и связях. Метод сил. Канонические уравнения. Выбор основной системы. Расчет статически неопределимых балок и простейших рам.

Тема 13. Продольный изгиб стержня.

Понятие об устойчивой и неустойчивой формах равновесия. Устойчивость сжатых стержней. Понятие о критической нагрузке. Формула Эйлера для различных случаев опорного закрепления. Понятие о гибкости и приведенной длине стержня. Пределы применимости формулы Эйлера. Понятие о потере устойчивости при напряжениях, превышающих предел пропорциональности материала. Исследование Ясинского. Коэффициент продольного изгиба. Подбор сечений при расчете на устойчивость. Продольно-поперечный изгиб, проверка устойчивости и прочности.

Тема 14. Динамическая нагрузка.

Использование принципа Даламбера. Силы инерции. Упругие колебания систем с одной степенью свободы. Определение динамического коэффициента при колебаниях. Ударные нагрузки. Продольный удар. Изгибающий удар. Крутящий удар. Напряжения и деформации при ударе.

5.3. Темы и формы занятий семинарского типа

Учебным планом предусмотрены практические и лабораторные работы.

No	Наименование раздела дисципли-	Форма проведения	Трудоемк	ость, час
145	ны (модуля) занятия		очная	заочная
1	Центральное растяжение-сжатие.	Лабораторная и	4	2
1	Сдвиг.	практическая работы	т	<u> </u>
2	Геометрические характеристики	Лабораторная и	4	1
	плоских сечений	практическая работы	Į.	1
3	Кручение стержней круглого се-	Лабораторная и	4	1
	чения	практическая работы	т	1
4	Поперечный изгиб. Расчеты на	Лабораторная и	4	1
	прочность.	практическая работы	т	1
5	Статически неопределимые систе-	Лабораторная и	4	1
	МЫ	практическая работы	<u> </u>	1
6	Изгиб с кручением.	Лабораторная и	4	1
	потно с кру тепнем.	практическая работы	,	1
7	Косой изгиб. Внецентренное сжа-	Лабораторная и	4	1
'	тие.	практическая работы	4	1
0	V	Лабораторная и	2	1
8	Устойчивость сжатых стержней.	практическая работы	2	1
9	Пинаминаские новыхожу	Лабораторная и	2	1
9	Динамические нагрузки.	практическая работы	2	1
	Итого:	32	10	

5.4 Детализация самостоятельной работы

No	Наименование раздела дисциплины	Вид самостоятельной работы	Трудое	мкость, час
	(модуля)		очная	заочная
1	Задачи курса сопротивления материалов. Основные понятия. Понятия о напряженном и деформированном состоянии. Метод сечений.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	4	6

No	Наименование раздела № дисциплины Вид самостоятельной работы		Трудое	мкость, час
	(модуля)	A	очная	заочная
2	Центральное растяжение- сжатие. Сдвиг.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	6	8
3	Механические свойства материалов. Геометрические характеристики	Изучение теоретического курса, подготовка к текущему контролю, тестирование	6	8
4	Поперечный изгиб. Круччение. Расчеты на прочность.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	6	8
5	Анализ напряженного и деформированного состояния в точке.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	6	6
6	Сложное сопротивление.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	6	10
7	Изгиб с кручением.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	6	10
8	Теория напряженного и деформированного состояния в точке. Обобщенный закон Гука. Объемная деформация.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	6	8
9	Теория прочности.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	6	8
10	Интеграл Мора. Способ Верещагина.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	4	6
11	Косой изгиб. Внецентрен- ное сжатие.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	8	8
12	Статически неопредели- мые системы.	татически неопредели-		14
13	Устойчивость сжатых стержней.	Изучение теоретического курса, подготовка к текущему контролю, тестирование	4	10
14	Динамические нагрузки.	4	10	
		ежуточной аттестации	9,65	7,65
	И	91,65	127,65	

6. Перечень учебно-методического обеспечения по дисциплине Основная и дополнительная литература

No	Автор, наименование	Год	Примечание
Π/		изда-	

П		кин				
	Основная литература					
1	Степин, П. А. Сопротивление материалов : учебник / П. А. Степин. — 13-е изд., стер. — Санкт-Петербург : Лань, 2022. — 320 с. — ISBN 978-5-8114-1038-5. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/210815 — Режим доступа: для авториз. пользователей.	2022	Полнотекстовый доступ при входе по логину и паролю*			
	Дополнительная литература					
1	Сопротивление материалов : методические указания (лабораторные работы / составители В. Г. Артюх, А. Б. Байрамов. — Санкт-Петербург : СПбГУ ГА, 2020. — 84 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/157343 . — Режим доступа: для авториз. пользователей.	2020	Полнотекстовый доступ при входе по логину и паролю*			
2	Сергеевичев, А. В. Сопротивление материалов: учебное пособие для студентов / А. В. Сергеевичев, А. Н. Пенкин, В. Е. Бызов; под редакцией Е. Н. Власова. — Санкт-Петербург: СПбГЛТУ, 2022. — 108 с. — ISBN 978-5-9239-1301-9. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/257795. — Режим доступа: для авториз. пользователей.	2022	Полнотекстовый доступ при входе по логину и паролю*			
3	Одинцева, С. А. Сопротивление материалов с элементами строительной механики: учебное пособие / С. А. Одинцева, В. А. Сопига. — Екатеринбург: УГЛТУ, 2021. — 236 с. — ISBN 978-5-94984-785-5. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/261260. — Режим доступа: для авториз. пользователей.	2021	Полнотекстовый доступ при входе по логину и паролю*			

^{*-} прежде чем пройти по ссылке, необходимо войти в систему.

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий.

Электронные библиотечные системы

- электронная библиотечная система УГЛТУ (http://lib.usfeu.ru/);
- электронно-библиотечная система «Лань». Договор №024/23-ЕП-44-06 от 24.03.2023 г. Срок действия: 09.04.2023-09.04.2024;
- электронно-библиотечная система «Университетская библиотека онлайн» (biblioclub.ru);
- электронная образовательная система «Образовательная платформа ЮРАЙТ». Лицензионный договор №015/23-ЕП-44-06 от 16.02.2023 г. Срок действия: 01.03.2023 – 28.02.2024;
- универсальная база данных EastView (ООО «ИВИС») (https://dlib.eastview.com/basic/details).

Справочные и информационные системы

— Справочная правовая система «КонсультантПлюс» (http://www.consultant.ru/). Договор сопровождения экземпляров системы КонсультантПлюс №0607/3К от 25.01.2023. Срок с 01.02.2023 г по 31.01.2024 г.;

- Справочно-правовая система «Система ГАРАНТ». Свободный доступ (режим доступа: http://www.garant.ru/company/about/press/news/1332787/)
- программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат. BУЗ» (URL: https://www.antiplagiat.ru/);
 - информационная система 1C: ИТС (http://its.1c.ru/). Режим доступа: свободный.

Профессиональные базы данных

- 1. Научная электронная библиотека elibrary. Режим доступа: http://elibrary.ru/.
- 2. Библиотека Машиностроителя. Режим доступа: https://lib-bkm.ru/.
- 3. Электронная Интернет библиотека для «технически умных» людей «ТехЛит.ру». Режим доступа: http://www.tehlit.ru/.
 - **4.** Техэксперт: Машиностроительный комплекс. Режим доступа: https://tex-эксперт.pyc/
 - 5. База данных «Открытая база ГОСТов». Режим доступа: https://standartgost.ru/
- 6. Интернет-сайт Федерального агентства по техническому регулированию. Режим доступа: http://www.gost.ru/.
 - 7. и-Маш: ресурс машиностроения. Режим доступа: http://www.i-mash.ru/
 - 8. Портал машиностроения. Режим доступа: http://www.mashportal.ru/
- 9. Машиностроение: сетевой электронный журнал. Режим доступа: http://indust-engineering.ru/archives-rus.html
- 10. Инженерный портал В масштабе. Режим доступа: https://vmasshtabe.ru/category/mashinostroenie-i-mehanika
- 11. Российская Ассоциация организаций и предприятий целлюлозно-бумажной промышленности (РАО «Бумпром»). Режим доступа: https://bumprom.ru/
 - 12. Портал о лесозаготовке и деревообработке. Режим доступа: https://forestcomplex.ru/

Нормативно-правовые акты

- 1. Гражданский кодекс Российской Федерации от 30.11.1994 года N51-Ф3. Режим доступ: http://www.consultant.ru/document/cons doc LAW 5142/
- 2. Федеральный закон «О защите прав потребителей» от 07.02.1992 N 2300-1 (ред. от 08.12.2020). Режим доступ: http://www.consultant.ru/document/cons_doc_LAW_305/
- 3. Федеральный закон «Об обеспечении единства измерений» от 26.06.2008 N 102-ФЗ. Режим доступ: http://www.consultant.ru/document/cons_doc_LAW_77904/
- 4. Федеральный закон «Об информации, информационных технологиях и о защите информации» от $27.07.2006\ N\ 149-\Phi 3$. Режим доступ: http://www.consultant.ru/document/cons_doc_LAW_61798/

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции	Вид и форма контроля		
ОПК-1. Способен применять естествен-	Промежуточный контроль: контроль-		
нонаучные и общеинженерные знания, методы	ные вопросы и задачи к экзамен		
математического анализа и моделирования в	Текущий контроль: тестирование, за-		
профессиональной деятельности.	щита лабораторных и практических ра-		
	бот, выполнение домашнего задания		

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии оценивания устного ответа на контрольные вопросы и задачи к экзамену (промежуточный контроль формирование компетенций ОПК-1):

*от*мично - дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Знание об объекте демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей. Ответ изложен литературным языком в терминах науки, показана способность быстро реагировать на уточняющие вопросы;

хорошо - дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен, изложен в терминах науки. Однако допущены незначительные ошибки или недочеты, исправленные обучающимся с помощью «наводящих» вопросов;

удовлетворительно - дан неполный ответ, логика и последовательность изложения имеют существенные нарушения. Допущены грубые ошибки при определении сущности раскрываемых понятий, теорий, явлений, вследствие непонимания обучающимся их существенных и несущественных признаков и связей. В ответе отсутствуют выводы. Умение раскрыть конкретные проявления обобщенных знаний не показано. Речевое оформление требует поправок, коррекции;

неудовлетворительно - обучающийся демонстрирует незнание теоретических основ предмета, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминологией, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить, даже при коррекции преподавателем.

Критерии оценивания выполнения заданий в тестовой форме (текущий контроль формирования компетенций ОПК-1)

По итогам выполнения тестовых заданий оценка производится по четырехбалльной шкале. При правильных ответах на:

86-100% заданий – оценка «отлично»;

71-85% заданий – оценка «хорошо»;

51-70% заданий – оценка «удовлетворительно»;

менее 51% - оценка «неудовлетворительно».

Критерии оценивания защиты лабораторных и практических работ (текущий контроль формирования компетенций ОПК-1):

отпично - выполнены все задания, обучающийся четко и без ошибок ответил на все контрольные вопросы.

хорошо - выполнены все задания, обучающийся без с небольшими ошибками ответил на все контрольные вопросы.

удовлетворительно - выполнены все задания с замечаниями, обучающийся ответил на все контрольные вопросы с замечаниями.

неудовлетворительно - обучающийся не выполнил или выполнил неправильно задания, ответил на контрольные вопросы с ошибками или не ответил на конкретные вопросы.

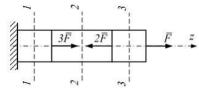
Критерии оценивания домашнего задания (текущий контроль, формирование компетенций ОПК-1):

отмично - работа представлена в срок, выполнены все разделы домашнего задания, оформление, структура и стиль работы образцовые; работа выполнена самостоятельно, присутствуют собственные обобщения, рекомендации и выводы; при защите домашнего задания даны правильные ответы на все вопросы.

xopouo — работа представлена в срок, некоторые разделы домашнего задания выполнены с незначительными замечаниями; в оформлении, структуре и стиле задания, нет грубых оши-

бок; задание выполнено самостоятельно, присутствуют собственные выводы; при защите домашнего задания даны правильные ответы на все вопросы с помощью преподавателя.

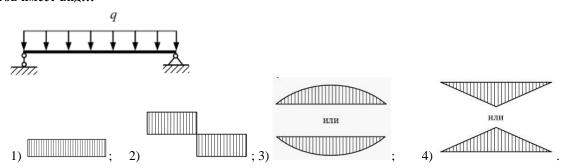
удовлетворительно — работа представлена в срок, многие разделы домашнего задания имеют значительные замечания; в оформлении, структуре и стиле работы есть недостатки; задание выполнено самостоятельно, присутствуют выводы; при защите домашнего задания ответы даны не на все вопросы.


неудовлетворительно - работа представлена позже установленного срока, задания в выполнены не полностью или неправильно; отсутствуют или сделаны неправильные выводы и обобщения; оформление задания не соответствует требованиям; при защите домашнего задания не даны ответы на поставленные вопросы.

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Задания в тестовой форме (текущий контроль)

Текущий контроль знаний по темам курса проводится также в форме тестирования. Тест состоит из 10 вопросов. Приведен примерный тест по теме «Растяжение прямого стержня».


Для стержня, схема которого изображена на рисунке, продольная сила N в сечении 2-2 будет...

Варианты ответов:

- 1) равной нулю; 2) равномерно распределенной по сечению;
- 3) растягивающей; 4) сжимающей.

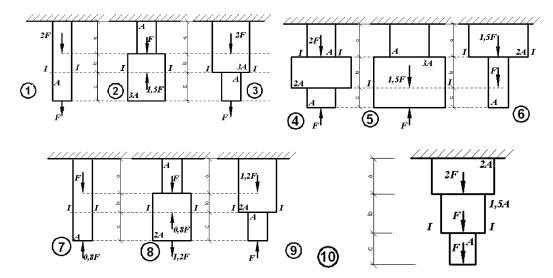
Балка нагружена равномерно распределенной нагрузкой интенсивности q. Эпюра изгибающих моментов имеет вид...

Домашнее задание (текущий контроль)

Домашнее задание по дисциплине представляет собой расчетную работу с построением эпюр. Преподавателем каждому обучающемуся выдается вариант индивидуального задания, который содержит исходные данные. Алгоритм выполнения домашней работы прописан в методических указаниях.

Пример домашнего задания теме «Растяжение прямого стержня».

Стальной брус нагружен силой F и удельным весом (78 к $H/м^3$).


Требуется:

- построить эпюры нормальных сил и напряжений по длине бруса;

- указать положение наиболее опасного сечения и величину нормального напряжения в этом сечении;
 - определить перемещение поперечного сечения І–І бруса.

Примем, что материал бруса имеет модуль продольной упругости $E=2\cdot 10^5$ МПа. Данные к этой задаче приведены в таблице, схемы — на рисунке

№ строки	Схема бруса	А, см ²	F, кH	а, м	В, М	С, М
1	1	10	11	2,1	2,5	1,1
2	2	11	12	2,2	2,6	1,2
3	3	12	13	2,3	2,7	1,3
4	4	13	14	2,4	2,8	1,4
5	5	14	15	2,5	2,9	1,5
6	6	15	16	2,6	3,0	1,6
7	7	16	17	2,7	3,1	1,7
8	8	17	18	2,8	3,2	1,8
9	9	18	19	2,9	3,3	1,9
10	10	19	20	3,0	3,4	2,0

Задания для практических и лабораторных работ (текущий контроль)

- 1. Определение центра тяжести сложной фигуры. Построение центральных осей. Определение осевых, центробежных моментов инерции относительно центральных осей. Определение положения главных центральных осей с учетом угла поворота. Определение осевых моментов инерции относительно главных центральных осей. Определение радиусов инерции, построение эллипса инерции.
- 2. Определение опорной реакции. Определение внутренних силовых факторов, возникающих при деформации растяжение. Построение эпюр.

- 3. Определение реактивного момента. Определение внутренних силовых факторов, возникающих при деформации кручение. Построение эпюр. Определение диаметра вала из условия прочности.
- 4. Определение опорных реакций. Определение внутренних силовых факторов, возникающих при деформации изгиб. Построение эпюр. Из условия прочности подбор двугавровой балки.
- 5. Определение степени статической неопределимости. Составление канонического уравнения. Определение внутренних силовых факторов, возникающих при деформации изгиб (статически неопределимая балка). Построение эпюр.
- 6. Определение положения нулевой линии. Определение максимальных расчетных напряжений.
- 7. Определение усилий натяжения ремней на шкивах. Определение и построение эпюр внутренних изгибающих моментов методом сечений относительно осей. Определение диаметра вала (по 3 гипотезе прочности).
 - 8. Определение гибкости стержня. Определение допускаемой нагрузки.
- 9. Определение динамического напряжения и перемещения без учета веса балки и с учетом веса балки.

Контрольные вопросы и задачи к экзамену (промежуточный контроль)

Промежуточная аттестация по дисциплине согласно учебному плану проводится в форме экзамена. Экзаменационный билет включает в себя два вопроса из теоретической части курса и задачу. Перечень контрольных вопросов и примерные задачи экзаменационного билета приведены ниже.

Контрольные вопросы

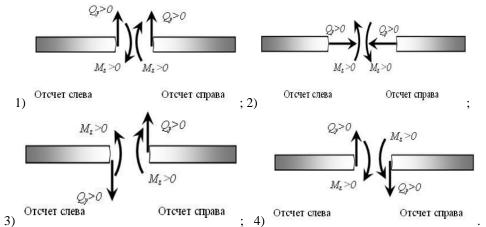
- 1. Историческое развитие учения о сопротивлении материалов. Диаграмма стального образца Cт – 3.
- 2. Диаграмма Ф.Ясинского.
- 3. Основные понятия курса сопротивления материалов.
- 4. Механические характеристики Ст-3. Закон Гука при растяжении сжатии и коэффициент Пуассона.
- 5. Предел прочности и предел текучести. Допускаемые напряжения. Основания для выбора коэффициента запаса прочности.
- 6. Диаграммы растяжения различных материалов.
- 7. Расчет на растяжение сжатие.
- 8. Геометрический смысл модуля упругости.
- 9. Вывод формулы Лапласа для расчета тонкостенных сосудов.
- 10. Расчет сосуда шаровой формы.
- 11. Изменение объема при растяжении сжатии.
- 12. Три типа задач курса сопротивления материалов.
- 13. Статически неопределимые случаи растяжения сжатия.
- 14. Сдвиг. Закон Гука при сдвиге.
- 15. Напряжения в осевом и поперечном сечении цилиндрического котла.
- 16. Коэффициент Пуассона. Относительное изменение объема при деформации растяжения.
- 17. Расчет статически неопределимых систем на растяжение сжатие.
- 18. Напряжения, возникающие при изменении температуры.
- 19. Изменение объема при растяжении.
- 20. Расчет гибких нитей.
- 21. Момент инерции полярный и осевой, зависимости между ними. Вывод формулы момента инерции для площади круга
- 22. Момент инерции площади.
- 23. Вычисление главных центральных моментов инерции. Вычисление момента сопротивления.

- 24. Определение положения главных центральных осей инерции.
- 25. Главные оси инерции и главные моменты инерции.
- 26. Моменты инерции площади прямоугольника.
- 27. Зависимость между моментами инерции относительно параллельных осей.
- 28. Вычисление полярного момента инерции круглого сечения.
- 29. Главные оси инерции и главные моменты инерции. Гибкость стержня.
- 30. Вычисление главных центральных моментов инерции.
- 31. Вычисление момента инерции.
- 32. Вычисление момента инерции площади круга.
- 33. Теорема о моментах инерции относительно параллельных осей.
- 34. Определение осевых моментов инерции для простейших фигур.
- 35. Координаты центра тяжести прямоугольника, треугольника, полукруга, трапеции.
- 36. Центр тяжести площади параболического сектора.
- 37. Основные теоремы о моменте инерции.
- 38. Моменты инерции прямоугольника, треугольника, круга и полукруга.
- 39. Вычисление момента инерции сложной фигуры.
- 40. Центробежный момент инерции.
- 41. Центробежный момент инерции прямоугольника, треугольника.
- 42. Момент сопротивления изгиба: прямоугольника, круга, трубчатого сечения.
- 43. Зависимость между моментами инерции относительно осей, проходящих через одну и ту же точку.
- 44. Зависимость между моментами инерции при повороте осей.
- 45. Зависимость между моментами инерции относительно параллельных осей, из которых одна центральная.
- 46. Классические теории прочности.
- 47. Изгибающий момент, поперечная сила, нормальная сила.
- 48. Определение нормальных и касательных напряжений при изгибе балки.
- 49. Построение эпюр поперечных сил и изгибающих моментов при изгибе.
- 50. Наивыгоднейшие формы сечения балок.
- 51. Дифференциальные зависимости при изгибе.
- 52. Дифференциальное уравнение изогнутой оси балки и его интегрирование.
- 53. Эпюра касательных напряжений по сечению балки.
- 54. Касательные напряжения при изгибе.
- 55. Методы контроля правильности построения эпюр поперечных сил и изгибающих моментов.
- 56. Интегрирование дифференциального уравнения изогнутой оси балки при нескольких участках.
- 57. Балки Гербера.
- 58. Определение углов поворота и прогибов методом начальных параметров.
- 59. Вычисление касательных напряжений при изгибе балки.
- 60. Нормальные напряжения при изгибе.
- 61. Расчет статически неопределимых балок методом сравнения деформаций.
- 62. Напряжения нормальных и касательных напряжений по длине и сечению балки при изгибе.
- 63. Расчет статически неопределимых балок методом сил.
- 64. Расчет статически неопределимых рам методом сил.
- 65. Продольно поперечный изгиб. Определение напряжений и прогибов.
- 66. Формула И.Г.Бубнова для определения прогиба при продольно-поперечном изгибе.
- 67. Изгиб со сжатием. Вывод формулы нормального напряжения. Ядро сечения.
- 68. Внецентренное сжатие. Определение напряжений. Уравнение нулевой линии. Ядро сечения.
- 69. Определение нормальных напряжений при внецентренном приложении нагрузки.
- 70. Определение нормальных напряжений и прогибов при косом изгибе.
- 71. Изгиб со сжатием. Вывод формулы нормального напряжения.
- 72. Расчет балки на совместное действие продольных и поперечных сил.

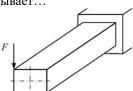
- 73. Определение напряжений при внецентренном растяжении.
- 74. Вывод уравнений нулевой линии при внецентренном сжатии.
- 75. Косой изгиб. Определение положения нулевой линии и опасных точек.
- 76. Вывод основных формул при кручении круглого стержня.
- 77. Касательные напряжения при кручении круглого стержня.
- 78. Расчет вала на совместное действие изгиба с кручением.
- 79. Зависимость между крутящим моментом, мощностью и числом оборотов вала.
- 80. Кручение стержней прямоугольного сечения.
- 81. Расчет валов на прочность и жесткость.
- 82. Расчет стержней некруглого сечения на чистое кручение.
- 83. Вычисление полярных моментов инерции и моментов сопротивления сечения пустотелого вала.
- 84. Расчет сплошного и полого валов.
- 85. Расчет круглого вала на прочность и жесткость при одновременном действии изгиба и кручения.
- 86. Момент сопротивления пустотелого вала при кручении.
- 87. Зависимость между касательными напряжениями и углом закручивания при кручении круглого стержня.
- 88. Определение угла закручивания при кручении.
- 89. Расчет тонкостенных сосудов.
- 90. Напряжения в тонкостенном, цилиндрическом сосуде при внутреннем давлении.
- 91. Температурные напряжения в элементах статически неопределимых конструкциях.
- 92. Расчет винтовой пружины.
- 93. Правило Верещагина.
- 94. Интеграл Мора и его применение.
- 95. Формула Эйлера для определения критического напряжения и пределы ее применения.
- 96. Расчет сжатых стержней. Определение коэффициента ф.
- 97. Критическое напряжение и гибкость стержня.
- 98. Пределы применения формулы Эйлера при расчете на продольный изгиб.
- 99. Критическая сила и критическое напряжение.
- 100. Устойчивость сжатого стержня.
- 101. Расчет на устойчивость по коэффициенту снижения допускаемых напряжений.
- 102. Формула Эйлера при расчете на устойчивость.
- 103. Зависимость величины критической силы от способа закрепления концов стержня.
- 104. Формула Эйлера при различных случаях закрепления.
- 105. Динамический коэффициент при изгибающем ударе.
- 106. Напряжения при изгибающем ударе.
- 107. Определение напряжений и прогибов при изгибающем ударе.
- 108. Усталость. Концентрация напряжений. Выбор допускаемых напряжений.
- 109. Расчет на прочность при напряжениях циклически изменяющихся во времени.
- 110. Кривая усталости при симметричном цикле.
- 111. Предел выносливости. Факторы, влияющие на предел выносливости.
- 112. Определение коэффициента запаса прочности при симметричном и асимметричном цикле напряжений.
- 113. Практические меры повышения сопротивления усталости материалов.
- 114. Расчет элементов конструкций с учетом сил инерции.
- 115. Крутящий удар.
- 116. Внецентренный удар.
- 117. Расчет безмоментных оболочек вращения.
- 118. Расчеты по теориям прочности и по предельным состояниям стержней.
- 119. Выбор предельного состояния в зависимости от свойств материала, условий работы и назначение конструкции.

120. Испытание материалов, их виды. Испытательные машины в СМ.

Примерные задачи


1. Утверждение, что напряжения и перемещения в сечениях, удаленных от места приложения внешних сил, не зависят от способа приложения нагрузки, называется...

Варианты ответов:


- 1) принципом независимости действия сил;
- 2) гипотезой плоских сечений;
- 3) принципом начальных размеров;
- 4) принципом Сен-Венана.
- 2. Правило, согласно которому на взаимно перпендикулярных площадках элемента, выделенного из тела, касательные напряжения равны по величине и направлены к общему ребру (или от него), называют...

Варианты ответов:

- 1) масштабным эффектом;
- 2) законом парности касательных напряжений;
- 3) законом Гука при сдвиге;
- 4) условием неразрывности деформаций.
- 3. Правило знаков для поперечной силы Q_y и изгибающего момента M_z изображено на рисунке...

4. При данном нагружении стержень прямоугольного поперечного сечения испытывает...

- 1) кручение и плоский поперечный изгиб; 2) кручение и изгиб;
- 3) кручение; 4) плоский поперечный изгиб.

7.4. Соответствие оценок и уровней сформированных компетенций

Уровень сформированных компетенций	Оценка	Пояснения
Высокий	отлично	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены.

Уровень сформированных компетенций	Оценка	Пояснения
		Обучающийся свободно демонстрирует способность применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности.
Базовый	хорошо	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями. Обучающийся демонстрирует способность применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности.
Пороговый	удовлетво- рительно	Теоретическое содержание курса освоено частично, большинство предусмотренных программой обучения учебных заданий выполнено, в них имеются ошибки. Обучающийся способен под руководством применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности.
Низкий	неудовле- творитель- но	Теоретическое содержание курса не освоено, большинство предусмотренных программой обучения учебных заданий либо не выполнены, либо содержат грубые ошибки; дополнительная самостоятельная работа над материалом не привела к какому-либо значительному повышению качества выполнения учебных заданий. Обучающийся не способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности.

8. Методические указания для самостоятельной работы обучающихся

Самостоятельная работа — планируемая учебная, учебно-исследовательская работа студентов, выполняемая во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль в контроле за работой студентов). Самостоятельная работа студентов в вузе является важным видом их учебной и научной деятельности.

Основными видами самостоятельной работы обучающихся по дисциплине являются:

- подготовка к текущему контролю (защита лабораторных и практических работ);
- подготовка к текущему контролю (задания в тестовой форме);
- подготовка к текущему контролю (выполнение домашнего задания)
- подготовка к промежуточной аттестации (экзамен).

Выполнение домашнего задания представляет собой вид самостоятельный работы, направленный на закрепление обучающимися изученного теоретического материала на практике. Домашнее задание имеет четкую структуру, последовательность, цельность текста и расчетов, позволяют создавать ее по принципу логичности, чтобы части были связаны между собой и обладали смысловой нагрузкой. Домашнее задание включает: титульный лист, исходная схема задания, расчетная схема, необходимые графические построения (эпюры).

Задания в тестовой форме сформированы по всем разделам дисциплины.

Данные тесты могут использоваться:

- обучающимися при подготовке к экзамен в форме самопроверки знаний;
- преподавателями для проверки знаний в качестве формы текущего контроля на практических занятиях;
 - для проверки остаточных знаний обучающихся, изучивших данный курс.

Задания в тестовой форме рассчитаны на самостоятельную работу без использования вспомогательных материалов, то есть при их выполнении не следует пользоваться учебной и другими видами литературы. Прочитав задание, следует выбрать правильный ответ.

На выполнение теста отводится ограниченное время. Оно может варьироваться в зависимости от уровня тестируемых, сложности и объема теста. Как правило, время выполнения тестового задания определяется из расчета 45-60 секунд на один вопрос.

Содержание тестов по дисциплине ориентировано на подготовку обучающихся по основным вопросам курса. Уровень выполнения теста позволяет преподавателям судить о ходе самостоятельной работы обучающихся в межсессионный период и о степени их подготовки к зачету.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Применение цифровых технологий в рамках преподавания дисциплины предоставляет расширенные возможности по организации учебных занятий в условиях цифровизации образования и позволяет сформировать у обучающихся навыки применения цифровых сервисов и инструментов в повседневной жизни и профессиональной деятельности.

Для реализации этой цели в рамках изучения дисциплины могут применяться следующие цифровые инструменты и сервисы:

- для коммуникации с обучающимися:

Сервис WEEEK (https://weeek.net/ru) – сервис для коммуникации, распространяется по лицензии trialware;

YouGile (<u>https://ru.yougile.com/</u>) — система управления проектами и общения, планировщик задач, распространяется по лицензии trialware;

Сферум ($\underline{\text{https://sferum.ru/?p=start}}$) — мессенджер, распространяется по лицензии FreeWare;

VK Мессенджер (https://vk.me/app?mt_click_id=mt-v7eix5-1660908314-1651141140) — мессенджер, распространяется по лицензии FreeWare;

- для планирования аудиторных и внеаудиторных мероприятий:

Pruffme – система для организации коллективной работы и онлайн-встреч, распространяется по проприетарной лицензии;

Mirapolis – система для организации коллективной работы и онлайн-встреч, распространяется по проприетарной лицензии;

Webinar (https://webinar.ru/) — платформа для вебинаров, обучения, распространяется по лицензии trialware;

Яндекс. Телемост (https://telemost.yandex.ru/) — сервис для видеозвонков, распространяется по лицензии ShareWare;

- для совместного использования файлов:

Яндекс.Документы (<u>https://docs.yandex.ru/</u>) – инструмент для создания и совместного использования документов, распространяется по лицензии trialware;

Яндекс. Диск — сервис для хранения и совместного использования документов, распространяется по лицензии trialware.

Для успешного овладения дисциплиной используются следующие информационные технологии обучения.

При проведении лекций и занятий семинарского типа используются презентации в программе MSOffice (PowerPoint), осуществляется выход на профессиональные сайты, используются видеоматериалы различных интернет-ресурсов.

Для дистанционной поддержки дисциплины используется система управления образовательным контентом Moodle. Для работы в данной системе все обучающиеся на первом курсе получают индивидуальные логин и пароль для входа в систему, в которой размещаются: программа дисциплины, материалы для лекционных и иных видов занятий, задания, контрольные вопросы.

В процессе изучения дисциплины учебными целями являются первичное восприятие учебной информации, ее усвоение, запоминание, а также структурирование полученных знаний и развитие интеллектуальных умений, ориентированных на способы деятельности репродуктивного характера. Посредством использования этих интеллектуальных умений достигаются узнавание ранее усвоенного материала в новых ситуациях, применение абстрактного знания в конкретных ситуациях.

Для достижения этих целей используются в основном традиционные информативноразвивающие технологии обучения с учетом различного сочетания пассивных форм (лекция, консультация, самостоятельная работа) и репродуктивных методов обучения (повествовательное изложение учебной информации, объяснительно-иллюстративное изложение) и практических методов обучения (выполнение практических работ).

Университет обеспечен необходимым комплектом лицензионного программного обеспечения:

- операционная система Windows 7, License 49013351 УГЛТУ Russia 2011-09-06, OPEN 68975925ZZE1309. Срок: бессрочно;
- операционная система AstraLinuxSpecialEdition. Договор №Pr000013979/0385/22-ЕП-223-06 от 01.07.2022. Срок: бессрочно;
- пакетприкладныхпрограмм Office Professional Plus 2010, License 49013351 УГЛТУ Russia 2011-09-06, OPEN 68975925ZZE1309. Срок: бессрочно;
- пакет прикладных программ Р7-Офис. Профессиональный. Договор
 №Pr000013979/0385/22-ЕП-223-06 от 01.07.2022. Срок: бессрочно;
- антивирусная программа KasperskyEndpointSecurity для бизнеса- Стандартный RussianEdition. 250-499 Node 1 yearEducationalRenewalLicense;
- операционная система WindowsServer. Контракт на услуги по предоставлению лицензий на право использовать компьютерное обеспечение № 067/ЭА от 07.12.2020 года. Срок бессрочно;
- система видеоконференцсвязи Mirapolis. Договор №57/03/23-K/0148/23-EП-223-03 от 13.03.2023. Срок: с 13.03.2023 по 13.03.2024;
- система видеоконференцсвязи Пруффми. Договор № 2576620 -1/ 0147 / 23-ЕП-223-03 от 15.03.2023. Срок: с 15.03.2023 по 15.03.2024;
- система управления обучением LMS Moodle программное обеспечение с открытым кодом, распространяется по лицензии GNU Public License (rus);
- браузер Yandex (https://yandex.ru/promo/browser/) программное обеспечение распространяется по простой (неисключительной) лицензии;
- интегрированная среда для разработки Visual Studio. Контракт на услуги по предоставлению лицензий на право использовать компьютерное обеспечение № 067/ЭА от 07.12.2020 года. Срок бессрочно.

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Реализация учебного процесса осуществляется в специальных учебных аудиториях университета для проведения занятий лекционного типа, занятий семинарского типа, занятий лабо-

раторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Все аудитории и лаборатории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. При необходимости обучающимся предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду УГЛТУ.

Есть помещение для хранения и профилактического обслуживания учебного оборудования.

Требования к аудиториям

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоя- тельной работы
Помещение для лекционных занятий, занятий семинарского типа, групповых и индивидуальных консультаций, текущей и промежуточной аттестации	Учебная аудитория для лекционных занятий, занятий семинарского типа, групповых и индивидуальных консультаций, текущей и промежуточной аттестации. Стационарная мультимедийная установка (проектор, экран). Учебная мебель. Учебная лаборатория сопротивления материалов для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля, оснащенная столами и стульями, лабораторным оборудованием: испытательная машина на растяжение, сжатие, изгиб (50т) ГМС-50; испытательная машина на растяжение (250 кг) РМИ-250; испытательная машина на растяжение, сжатие, изгиб (50т) КМ-50 I; испытательная машина на растяжение, сжатие, изгиб (5т и 20т); маятниковый копер на ударный изгиб и ударные растяжения (30 кг) МК- 30A.
Помещения для самостоятельной работы	Столы компьютерные, стулья, персональные компьютеры с выходом в сеть Интернет и электронную информационную образовательную среду.
Помещение для хранения и профилактического обслуживания учебного оборудования	Стеллажи, столы, стулья, приборы и инструменты для профилактического обслуживания учебного оборудования